
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Measurement

Supervisor: doc. Ing. Jan Roháč, Ph.D.
May 2022

Miniature navigation system for UAS
application

Grigoris Mantaos

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

498100Personal ID number:Mantaos Grigoris PanagiotisStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Measurement

Aerospace EngineeringStudy program:

AvionicsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Miniature navigation system for UAS application

Master’s thesis title in Czech:

Miniaturní navigační systém pro bezpilotní létající prostředky

Guidelines:

Design and develop a light-weighted and small-sized inertial navigation system (miniINS) consisting of inertial measurement
unit, GNSS receiver, and pressure measurement unit as key parts. Specify the requirements based on which the miniINS
should be composed of and further developed. The choice of components should be made based on a market analysis.
Use Altium Designer/KiCAD for the miniINS development. Second part of the assignment is related to the navigation
solution incorporated into the miniINS. Extend a given navigation algorithm written in C/C++ language with a data collecting
part which should ensure synchronism withing the system and finally provide navigation solution in terms of position,
velocity, and attitude as the solution outputs provided via CAN bus. The main part of the algorithm will be provided,
nevertheless, based on chosen sensors and aiding, it will require tuning. Perform practical experiments with the miniINS
put on a UAS and test and verify the final solution. Specify the reached accuracy.

Bibliography / sources:

[1] S. Grewal / P. Andrews: Kalman Filtering – Theory and Practice using Matlab ® 3rd edition 2008, Wiley.
[2] J. A. Farrell / M. Barth: The global positioning system & inertial navigation 2nd edition 1999, Mc Graw Hill.
[3] S.Grewal et al: Global positioning systems, inertial navigation, and integration, 2nd edition 2007, John Wiley & Sons.
[4] R.M.Rogers: Applied mathematics in integrated navigation systems, 2nd edition, 2003 AIAA

Name and workplace of master’s thesis supervisor:

doc. Ing. Jan Roháč, Ph.D. Department of Measurement FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 20.05.2022Date of master’s thesis assignment: 07.02.2022

Assignment valid until:
by the end of summer semester 2022/2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signaturedoc. Ing. Jan Roháč, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

1

Declaration

I declare that the presented work was developed independently, and that I have listed all

sources of information used within it, in accordance with the methodical instructions for

observing the ethical principles in the preparation of university theses.

 Prague, May 20, 2022

2

Abstract

This diploma thesis will outline the design and programming of an Inertial Navigation

System, dubbed Mini-INS. The completed system will, like most INS platforms, provide as

output the 9-DOF state of a host vehicle in terms of Position, Velocity and Attitude (PVA).

Specifically, the implementation will focus on the navigational requirements of Unmanned
Aerial Systems (UAS). However, no discrimination shall be made on flight mechanics,

meaning that the Mini-INS should be a thorough plug-and-play solution for any aerial or

land vehicle, be it a fixed-wing drone, a multi-copter, or a caterpillar tracked robot.

 In the context of this implementation, the system is designed and manufactured from top

to bottom. This includes the hardware design of a schematic, its realization on a Printed
Circuit Board (PCB), and its programming so that it may execute the functions of an INS.

The primary objective, as the title suggests, is to build a navigation system for use by

small unmanned vehicles. As a consequence, the focus of the design will be to minimize

the size of the PCB footprint, as well as the board's total power consumption. To achieve

this, the board utilizes a combination of MEMS sensors and a low-power ARM

microprocessor.

Keywords: UAV, IMU, INS, GNSS, Aided Navigation, Inertial Navigation, Kalman filter

Supervisor: doc. Ing. Jan Roháč, Ph.D.

3

Contents

1 Introduction 4

2 Inertial navigation systems 5

2.1 Theoretical background . 5

2.1.1 Frames of reference . 5

2.1.2 Inertial Measurement Units . 7

2.1.3 Aided navigation . 8

2.1.4 Kalman filter . 9

2.2 Navigation equations and algorithms . 9

2.2.1 Mechanization of navigation equations . 10

2.2.2 Error and bias estimation . 12

3 Implementation 18

3.1 System design . 18

3.1.1 System requirements . 19

3.2 Hardware design . 21

3.2.1 Electronic component selection . 21

3.2.2 Work done on prototype . 22

3.2.3 Realization of schematic . 24

3.2.4 Design of Printed Circuit Board layout . 27

3.3 Firmware . 32

3.3.1 Development and build environment . 32

3.3.2 Data handling and synchronization . 33

3.3.3 Synchronization of timestamps . 35

3.3.4 Software architecture . 36

3.3.5 Software behavior . 37

3.3.6 System initialization . 40

3.3.7 Computation strategy . 42

3.3.8 Control Area Network bus output . 46

3.3.9 Auxiliary serial output . 47

3.3.10 Configuration parameters . 49

3.4 Verification of results . 51

3.4.1 Comparison with reference MATLAB model . 56

4 Conclusion 58

4

Chapter 1
Introduction

This document represents a written essay, which is part of the diploma thesis leading up to

the author's graduation from the Aerospace Engineering program at the Czech Technical
University of Prague. The topic of the assignment is the planning, design, and realization

of an Inertial Navigation System. Such a unit is typically tasked with providing position,

velocity, and attitude information to the vehicle it is affixed to. The definite system to be

actualized shall employ principles of aided navigation, which involve the complementary

fusion of high-rate inertial sensors with a GNSS receiver. The motivation behind the

development of this system, is that it may be utilized by vehicles which require the

evaluation of these quantities at a high frequency. Examples of such vehicles include

autonomous cars, unmanned aerial systems, guided missiles, locomotive robots, and

more.

 In the interest of fulfilling the objectives outlined by the assignment, certain elements of

the implementation were given to the author by his thesis supervisor. These include

unequivocal guidance towards the understanding and implementation of navigational

principles; instructions on the effectuation of aided navigation; and implementation of a

linear Kalman filter model. Specifically, a working version of a Kalman filter implementation

in MATLAB was also provided.

 The author was tasked with the abstract design of the INS, as well as its physical

formulation. The explicit objectives were the operative conception of the system, the

design of a circuit schematic that would fulfill these functions on a Printed Circuit Board,

and the programming of the navigational functionality on an embedded microcontroller.

The latter also includes the adaptation and optimization of the existing Kalman filter

implementation from MATLAB to the embedded firmware. Additional goals of this

endeavor were that the system be designed in such a way that it is physically very small,

and operates with a low power consumption.

Introduction Implementation

Inertial Navigation
Systems Conclusions

Description of the topic.
Outline objectives.

Define scope and context.

Theoretical background.
Definition of key terms.

Introduction of references to
necessary sources.

Functional description.
Hardware design.

Software development.
Presentation of results.

Evaluation of results.
Assessment of project

completion.

Figure 1.1: Overview of the thesis chapter structure.

This thesis is logically segmented into four distinct chapters, as shown in figure 1.1.

5

Chapter 2
Inertial navigation systems

This chapter will provide the necessary theoretical foundation for the implementation of the

technical part of the diploma thesis. Given that the final product will enact the functionality

of an INS, the necessary theory to study spans from navigational basics, all the way to

probabilistic state estimations. In this chapter, this overview will be split into two sections.

The first one endeavors to familiarize the reader with key terms and definitions used

throughout this document, as well as to introduce all references to external sources that

were drawn from during the development process. The second section summarizes all

information from the sources cited in the first one, that is directly relevant to the realization

of the Mini-INS, such as mathematical equations.

2.1 Theoretical background

2.1.1 Frames of reference

Position, and by extension velocity and acceleration, are inherently relative. Evidently, to

define any sort of position or orientation, it is necessary to also declare the frame of

reference, to which said position and orientation are relative. As with most navigational

solutions, the following base frames are needed.

■ Inertial frame

As described in [1]: according to Newtonian dynamics, the inertial reference frame is

one where a body not subject to any force, will always be in rectilinear and uniform

motion. This is usually important to define in cases such as this, where inertial

measurement units are involved, since all inertial sensors produce measurements

relative to an inertial frame [2].

■ Sensor frame

This frame generally needs to be defined separately when dealing with Inertial
Measurement Units (IMU), as later sections will illustrate. This is because an IMU is

typically sensitive along a set of physical axes calibrated by the manufacturer, which

may not be parallel to the vehicle's axes once installed.

■ Platform frame

This is an intermediate frame, which is useful in case multiple sensors are placed on

the same PCB, but with different orientations. In this case, each sensor will need to

have its tri-axial measurement vector rotated to the platform frame. This frame typically

originates at the center of the PCB, has its axis perpendicular to the PCB surface

pointing out from the bottom side, and its other two axes pointing one length-wise and

another width-wise. Then, a fixed rotation can be defined, which will convert measured

i

s

p

z

6

forces from the platform frame to the body frame, which will depend on how the PCB is

mounted on the vehicle with respect to its primary body axes.

 The motivation for this auxiliary frame is to separate the rotation from the sensor

frame to the body frame into two distinct parts. The first part, which is the rotation from

 to , can be hard-coded for each sensor during manufacturing. And the second one,

which is the rotation from , can be the only one that has to be configured by the user

of the platform.

■ Body frame

The body frame, also sometimes called the vehicle frame, is a local reference frame

that remains rigidly attached to the body of the vehicle [2]. This type of frame typically

consists of an origin placed at the vehicle's expected center of gravity, and three

orthogonal axes.

■ Navigation frame

The navigation frame is constructed by placing a tangent plane at some point on the

geodetic reference ellipse [2]. Its purpose is to help define not only orientation with

reference to true north and the ground, but also the local positions and velocities. The

relationship between the body frame and the navigation frame is shown in figure 2.1.

 Two of the most common local frames are the North East Down (NED) and East
North Up (ENU), whose three-worded names denote the direction of the , and

axes.

■ Geographic frame

Whereas the navigation frame is used to define local attitude and position, the

geographic frame is used to define global position relative to the Earth. If to work with

Cartesian coordinates, the Earth-Centered, Earth-Fixed (ECEF) is used, which

originates at the center of the earth and defines its axes according to the North Pole

and prime meridian. For this work however, as in most navigational implementations,

the geodetic coordinate system is used, which defines a point's position in terms of

latitude , longitude , and altitude .

Figure 2.1: Reference coordinates frames in inertial navigation systems. [3]

s p

p

b

n

n e d

e

 ϕ̂ λ̂ ĥ

7

2.1.2 Inertial Measurement Units

Inertial Measurement Units (IMU) are sets of sensors which typically measure angular rate

or specific force relative to an inertial frame. Utilizing such measurements, it becomes

possible for the system to calculate its velocity and orientation. Because usually multiple

sensors are embedded together to fulfill this purpose, they have come to be treated as a

single unit referred to as an IMU. According to [4], there are two categories:

■ IMU with accelerometer and gyroscope

The first kind are IMUs consisting of a tri-axial accelerometer, and a tri-axial gyroscope.

A combination of the two, brings the total degrees of freedom up to six. These units

can be used to determine a system's orientation, in terms of roll and pitch angles in the

navigation frame.

■ IMU with accelerometer, gyroscope, and magnetometer
The second type still includes an accelerometer and gyroscope like the first, but is

expanded with a tri-axial magnetometer. This makes for a total of nine degrees of

freedom in this case. One of the main ways the magnetometer enhances the system, is

by providing measurements that make it possible to compute the magnetic heading.

The main disadvantage of the inclusion of the magnetometer, is that it is susceptible to

external disturbances in the magnetic field, which may for example be common in a

metropolitan environment.

Owing to technological innovations, widely-available IMUs can now be small, inexpensive,

and accurate [5]. Accelerometers and gyroscopes can be calibrated, and their readings

can usually be compensated for biases or linear thermal drift, which makes them quite

adequate at providing accurate measurements with a high bandwidth in the short-term. In

the long-term however, these sensors tend to suffer from considerable drift and other

errors [6], which make them unsuitable for navigation systems in most cases since even

small errors are compounded through integration. These inaccuracies are particularly

profound when using MEMS sensors, such as in this diploma thesis.

 According to [7], IMUs are generally characterized by one of four grades, according to

their performance. Specifically, the key performance indicator that differentiates them is

the bias instability of their gyroscopes.

■ Navigation grade refers to IMUs with a gyro bias instability less than . These

units are typically meant for military applications, since they can aid in navigation for up

to several hours in GNSS-denied environments.

■ Tactical grade refers to IMUs with a gyro bias instability less than . They can

typically aid in navigation for up to minutes in GNSS-denied environments, and are

usually placed on guided munitions.

■ Industrial grade refers to IMUs with a gyro bias instability less than . These can

only aid in navigation for about a minute without GNSS assistance, and are used for

UAVs.

0.1

h

∘

1

h

∘

10

10

h

∘

8

■ Consumer grade refers to IMUs that do not meet any of the above gyro bias instability

thresholds. They are typically unsuitable for navigation, and are placed in consumer

electronics.

2.1.3 Aided navigation

Aided navigation according to [2] is the combination of the inaccurate, but high-rate inertial

sensors, with a low-rate but accurate sensor that can help the system compensate for the

errors introduced by the former. One example of such a complementary combination,

which is relevant in the context of this diploma thesis, is the combination of an IMU with a

Global Navigation Satellite System (GNSS) receiver. Combinations like these are

commonly referred to as sensor fusion [8], which is the practice of combining data from

multiple sensors to obtain information that each individual sensor separately would never

be able to ascertain. Alternatively, sensor fusion is a term still used to describe systems

where multiple sensors effectively measure the same quantity, but utilizing different

operation principles, and their combined operation offers expanded coverage, improved

precision, or redundancy. What makes such a combination beneficial to the overall

system, is the fact that the components being incorporated offer complementary

characteristics, and measure non-overlapping quantities.

 Specifically in the case of aided navigation, the combination of an IMU with a GNSS

receiver allows for the system to satisfy its operational demands. It can now rely on the

high bandwidth, rate, and short-term precision of the inertial sensors, while ensuring their

long-term errors do not compromise the navigation system's reliability.

 The GNSS receiver provides the system with position, velocity, and time. With this

information, a system utilizing such sensor fusion is able to:

■ Correct its position and velocity at a regular interval. This mitigates the compounding of

errors from the integration of the acceleration and angular rates measured from the

IMU. The GNSS receiver will, of course, introduce its own errors in the process.

However, the idea here is that since these two systems determine position and velocity

by measuring different quantities, their unified estimation will be a better one, since a

source of error that affects one's measured quantities is unlikely to affect the other's as

well.

■ Estimate the current bias of the inertial sensors. This is possible using the knowledge

of the error that was observed between the actual position and velocity, and the

position and velocity calculated from the IMU.

Many methods exist for the fusion of complementary sensors in navigation systems. This

document though, will focus exclusively on the application of a linear time-varying Kalman
Filter, as it is described in [2].

9

2.1.4 Kalman filter

The Kalman filter, also known as Linear Quadratic Estimator (LQE), was first introduced by

R. E. Kalman in 1960 [9]. It is a state estimator, which uses the joint probability distribution

from a series of measurements of multiple variables. The motivation for this, depending on

the physical characteristics of the system, is twofold: this probabilistic combination may

improve the accuracy of measured quantities, and also potentially allow for the estimation

of quantities that cannot be measured directly. An overview of its working principle is

shown in figure 2.2. This document will not endeavor to delve into the theoretical details of

Kalman filtering or its nonlinear models. Instead, the focus will lie entirely on implementing

an existing model of the linear Kalman filter, adapting it for inertial navigation as proposed

by the author of [2].

Prediction step
Based on e.g.

physical model

Prior knowledge
of state

Update step
Compare prediction

to measurements

Measurements

Next timestep

Output estimate
of state

Figure 2.2: Basic concept of Kalman filtering. [10]

2.2 Navigation equations and algorithms

This section will summarize the works that are referenced in this document, by listing all

mathematical equations and algorithms that are used in the implementation of this diploma

thesis. They will be split into two subsections, separated logically according to each part's

inputs and outputs. In the first one, the mechanization of the navigation equations will be

described, which includes the computation of the system's Position, Velocity and Attitude
(PVA) from the measurements of the IMU. The algorithm outlined in this first subsection,

will need to be computed every time new measurements have been accumulated from the

IMU, which will be required in order to provide an output of the state of the system at a

high rate. The second subsection will detail the implementation of the linear Kalman filter,

which will require GNSS position and velocity measurements as inputs, and estimate the

current state error of the model. This algorithm will represent a complete Kalman filter

update cycle, which will be executed at a lower rate only when new GNSS data are

available.

 Note that any rotation shall be defined via a Direction Cosine Matrix (DCM).

Conventionally, these matrices will be symbolized as to denote a rotation from frame

to frame .

C a
b a

b

10

2.2.1 Mechanization of navigation equations

The inputs of this stage are the data from the IMU, which include measurements from an

accelerometer, a gyroscope, and a magnetometer. Firstly, the tri-axial measurement vector

from each sensor needs to be converted to the body frame, which, as described before,

requires two rotations: one to the platform frame and one to the body frame.

Note that, in equations and , the biases are also subtracted. In the context of this

section, these biases are initialized to zero, and updated using the Kalman filter which will

be described later.

 In the initialization phase of the system, the first series of IMU measurements will be

used to calculate the initial attitude of the system in terms of Euler angles. The roll and

pitch can be computed from the accelerometer [11], if to assume that the system is

initialized in a standstill state where the only force being applied to it is the force of gravity.

Then, knowing that, the yaw can be computed from the magnetometer using tilt

compensation [12].

For computational purposes, the attitude shall be kept as a DCM, which, as described in

the previous section, shall define a rotation from the body frame to the navigation frame.

f = C C − b

b
p
b

as
p [f x f y f z]

⊺
a
b (1)

 ω = C C − b

b
p
b

gs
p [ω x ω y ω z]

⊺
g
b (2)

 η = C C

b
p
b

ms
p [η x η y η z]

⊺
(3)

f{x,y,z}

ω{x,y,z}

η{x,y,z}

ba
b

bg
b

Cas
p

Cgs
p

Cms
p

Cp
b

− specific force measured along the accelerometer’s x, y, or z axis

− angular rate measured around the gyroscope’s x, y, or z axis

− magnetic field intensity measured along the magnetometer’s x, y, or z axis

− 3x1 accelerometer bias in the body frame

− 3x1 gyroscope bias in the body frame

− DCM rotation from the accelerometer’s sensor frame to the platform frame

− DCM rotation from the gyroscope’s sensor frame to the platform frame

− DCM rotation from the magnetometer’s sensor frame to the platform frame

− DCM rotation from the platform frame to the body frame

(1) (2)

 ϕ = arctan(
(f) + (f)x

b 2
z
b 2

−f y
b

) (4)

θ = arctan (
−f z

b

f x
b

) (5)

ψ = − arctan (
η cos θ + η sinϕ sin θ + η cosϕ sin θx
b

y
b

z
b

η cosϕ + η sinϕy
b

z
b

) (6)

11

After initialization, the specific force from the accelerometer will no longer be used to

determine attitude. In this state, the angular rates from the gyroscope will be the new

source of attitude information, which will be computed through integration from the initial

attitude. Following that, the specific force from the accelerometer will be rotated to the

navigation frame, then transformed to acceleration by compensating for gravity, and

integrated to compute velocity.

 The goal, as described previously, is to integrate the angular rates to obtain the

system's orientation. However, since the attitude is expressed as a DCM, the desired

integration can be expressed as a rotation of the DCM, which can be approximated by

discrete additive updates over time to the matrix. These updates are in the form of a

skew-symmetric matrix rotated to the navigation frame.

Then, the centripetal acceleration can be computed in the body frame.

The centripetal acceleration that was computed in should be subtracted from the

specific force in the body frame. Once in the navigation frame, the gravity vector should

now be added. This is because the accelerometer measures specific force, which is

effectively acceleration minus gravity.

The acceleration is now in the navigation frame, which constitutes the mechanization

update to the velocity vector. Note that these -updates are instantaneous, and will be

multiplied by the time elapsed during the discrete integration to update their respective

vectors.

C = b
n [

cos θ cosψ
cos θ sin ψ

− sin θ

sin ϕ sin θ cosψ − cos ϕ sin ψ
sin ϕ sin θ sin ψ + cos ϕ cosψ

sin ϕ cos θ

cos ϕ sin θ cosψ + sin ϕ sin ψ
cos ϕ sin θ sin ψ − sin ϕ cosψ

cos ϕ cos θ
] (7)

f

C b
n

 δC = C b
n

b
n

⎣

⎡ 0
ω z
b

−ω y
b

−ω z
b

0
ω x
b

ω y
b

−ω x
b

0 ⎦

⎤
(8)

δC −b
n discrete additive update to the attitude DCM

 a = C vcentripetal
b

⎣

⎡ 0
ω z
b

−ω y
b

−ω z
b

0
ω x
b

ω y
b

−ω x
b

0 ⎦

⎤
n
b n (9)

v −n velocity in the navigation frame

(9)

a = C f − a +

n
b
n (b

centripetal
b)

⎣

⎡0
0
g⎦

⎤
(10)

g − local gravity at the current latitude and altitude

a

δ

 δv = an n (11)

12

Going further, to update the system's position, it is necessary to convert the velocity from

the navigation frame to the global frame. This velocity in the global frame can then be

used to update the global position.

Finally, to complete a single update to the mechanization, the discrete updates computed

previously need to be added to the PVA vectors. Since the integration occurs through time,

these updates need to be multiplied by the time , which is the time that elapsed since

the previous update.

2.2.2 Error and bias estimation

For this stage of computations, it is assumed that there already is some computed PVA

state from the IMU measurements. This refers to the , , and values that were

computed in the previous subsection, for position, velocity and attitude respectively. The

new inputs here are the position and velocity from a GNSS receiver. With these

measurements, the system's state vector shall be estimated using a Kalman filter. This

state, which represents estimated errors in position, velocity, attitude, and sensor biases,

will in the end be used to correct those quantities in the navigation model.

 The algorithm, in the context of this project, will have to run on an embedded

microprocessor. Therefore, it is deemed preferable to implement the Kalman filter updates

using the factorization methods, which were proposed by Catherine Thornton in

δv −n mechanization update to velocity

 δp = v =

e e

⎣

⎡ v

R +M ĥ

1
n
n

 v

(R +) cos N ĥ ϕ̂

1
e
n

−v d
n ⎦

⎤

(12)

δpe

RN

RM

ϕ̂

ĥ

− mechanization update to the position vector

− radius of curvature in the prime vertical

− meridian radius of curvature

− computed latitude

− computed altitude

Δt

C b
n

vn

pe

:= C b
n

:= vn

:= pe

+

+

+

Δt ⋅ δC b
n

Δt ⋅ δvn

Δt ⋅ δpe
(13)

Δt

vn

pe

− sample time

− velocity in the NED frame, [v n
n v e

n v d
n]⊺

− position in the LLA frame, [ϕ̂ λ̂ ĥ]⊺

pe vn C b
n

UDU

13

[13] and Gerald Bierman in [14]. In this section, only the relevant equations will be written

for these proposed measurement update and time update steps. For further details and

evaluations of these methods, the reader is referred to the original publications.

 As described in the previous section, the Kalman filter that was provided as a linearized

model which is valid around the zero state. Therefore the state is described in terms of

errors from the computed state to the actual state. This way, errors in the state will get

corrected at regular intervals, allowing the model to operate around the zero state

indefinitely. Specifically, the state vector in this implementation will have values.

Upon receiving the GNSS data, the first step is to compute the Kalman filter's

measurement vector, which in this case is the error between the position and velocity from

the GNSS, and the computed position and velocity from the IMU.

Next is the Kalman filter measurement update step, where the model prediction is

compared to the measurements to obtain an estimation of the state error. This step

consists of the following set of equations [2]. As it was mentioned previously, the matrix

inversion in the first equation, makes this computationally exorbitant for a standalone ARM

microprocessor without a dedicated matrix multiplication unit. So, in practice it will not be

used, and it is simply mentioned here for completeness.

15

 x ≡ [δp δv δρ δb a
b δb g

b]
⊺

(14)

δp

δv

δρ

δba
b

δbg
b

− 3x1 position error in geodetic frame

− 3x1 velocity error in navigation frame

− 3x1 attitude error in Euler angles

− 3x1 error in accelerometer per-axis bias

− 3x1 error in gyroscope per-axis bias

e = [
p − pGNSS

e

v − vGNSS
e] (15)

e

pGNSS

vGNSS

pe

vn

− measured residuals

− 3x1 position in the geodetic LLA frame from the GNSS

− 3x1 velocity in the navigation frame from the GNSS

− 3x1 position in the global frame from the mechanization

− 3x1 velocity in the navigation frame from the mechanization

K

x k+1

P k+1

:= P H HP H +Rk
⊺ (k

⊺)−1

:= x +Kek

:= (I −KH)P (I −KH) +KRKk
⊺ ⊺

(16)

14

Instead of the infeasible equations in , Bierman's algorithm [14] will be used, which

relies on the factorization of the covariance matrix . The entire algorithm is given

below.

At the end of algorithm , is the normalized Kalman gain, which, when multiplied by

 and the residual from , can approximate the in . This allows for the

computation of the posterior state and posterior covariance matrix, which concludes the

measurement update step.

The posterior state that is computed in is sufficient for the compensation of

errors in the system's state, since it contains the estimation of the current state deltas.

Furthermore, in the final implementation, the posterior error state vector shall always

be immediately used to correct any offsets in the system's position and velocity. This

Pk

Pk+1

xk

xk+1

− prior covariance matrix

− posterior covariance matrix

− prior state vector

− posterior state vector

(16)
UDU P

Pk

Uk+1

Dk+1

a0

f⊺

g

for j := 1, ...,n

→ U D U k k k
⊺

:= U k

:= D k

:= R

:= AU k

:= D fk

⎩

⎨

⎧

a j

D k+1,j

v j

λ

for i := 1, ..., j − 1

:= a + f g j−1 j j

:= {
D k,j

 D

a j

a j−1
k,j

if a = 0j

otherwise

:= gj

:= {
0
−

a j−1

f j

if a = 0j−1

otherwise

⎩
⎨

⎧

U k+1,ij

v i

:= U + v λk,ij i

:= v +U v i k,ij j

(17)

(17) v

g (15) K (16)

x k+1
j

P k+1

:= x + v g e k
j

j j

i

∑ i

:= U D U k+1 k+1 k+1
⊺

(18)

x k+1 (18)

x k+1

15

process is shown below in . In doing so, the state of the system immediately after the

correction will theoretically be error-free. This means that must also be reset to zero.

The next necessary step as illustrated in figure 2.2, is the time propagation step, which

transitions the state space model one time step forward. In the context of the discrete

model described here, the time step is the time that elapses between two measurements.

Again from [2], this step consists of the set of equations shown in . Same as with the

measurement update step, the details of these equations will not be considered here,

rather referring the reader to [2]. Instead, the implementation proposed in [13] will be

implemented directly, as will be shown in equations and .

Note that has been reset to zero in . Having compensated the errors, it is

feasible to assume that the control input vector will also be zero. Therefore, the step of

updating shown in may be neglected entirely.

 The next necessary step is to define the transition matrix for the model. The following

transition matrix was given to the author by his diploma thesis supervisor, and will not be

analyzed further in this document.

(19)
x k+1

xk+1

pe

ve

Cb
n

ba

bg

xk+1

≡ [δp δv δρ δb a
b δb g

b]
⊺

:= p + δpe

:= v + δve

:= I + C

⎝

⎛

⎣

⎡ 0
δρ z

−δρ y

−δρ z

0
δρ x

δρ y

−δρ x

0 ⎦

⎤

⎠

⎞
b
n

:= b + δb a a
b

:= b + δb g g
b

:= [0 0 0 0 0]

(19)

(20)

(24) (25)

x k+1

P k+1

k

:= Φx +Gu k+1 k

:= ΦP Φ +Q k+1
⊺

d

:= k + 1
(20)

x k+1 (19)
u k

x k+1 (20)
Φ

Φ =

⎣

⎡I
0
0
0
0

F pv

I

0
0
0

F pρ

F vρ

I

0
0

F pba

F vba

0
F aa

0

0
F vbg

F ρbg

0
F bb

⎦

⎤

(21)

16

The next step that is needed for Thornton's time update algorithm, is to compute the

matrix from the parameterized covariance of the model. This computation can be

found in [2].

Faa

Fgg

Fpv

Fvρ

Fpρ

Fpba

Fvba

Fvbg

Fρbg

= I 1 + Δt + Δt[
2
1

(
τ a

1
)

2

τ a

1
]

= I 1 + Δt + Δt[
2
1

(
τ g

1
)

2

τ g

1
]

= Δt

⎣

⎡

R +M ĥ

1

0

0

0

(R +) cos N ĥ ϕ̂

1

0

0
0

−1⎦

⎤

= − Δt
⎣

⎡ 0
f z
n

−f y
n

−f z
n

0
f x
n

f y
n

−f x
n

0 ⎦

⎤

= F F

2
1

pv vρ

= F F

2
1

pv vba

= − F (C Δt) −C Δt
2
1

aa b
n [0 0 g 0]

⊺
b
n [0 0 g 0]

⊺

= C ΔtF

2
1

b
n

vρ

= F C Δt+C Δt
2
1

gg b
n

b
n

(22)

I

τa

τg

ĥ

ϕ̂

fn

− 3x3 identity matrix

− parameterized correlation time for accelerometer biases

− parameterized correlation time for gyroscope biases

− altitude

− latitude

− specific force in the navigation frame

Q d

Q 0

G

Q d

:=

⎣

⎡I
0
0
0
0

0
−C b

n

0
0
0

0
0
C b
n

0
0

0
0
0
I

0

0
0
0
0
I⎦

⎤

:= GQ G0
⊺

(23)

17

The above allows then for the computation of the covariance matrix for the current

time step. And by decomposing it, the algorithm is then computed according to [2] as

shown below. In the interest of brevity, the reader is referred to [13] for details regarding

the meaning and construction of the matrix .

And with the covariance matrix updated, and the state reset to zero for the new

time instance , one cycle of Kalman filter updates is concluded.

Q k

w

 Q := Δt(ΦQ +Q Φ)k 2
1

d d
⊺ (24)

Q k

for j := 1, ...,n

D k,1

P k+1

→ U D U k k k
⊺

⎩
⎨

⎧D k+1,j

for i := 1, ..., j − 1

:= w D (w)j
n−j

k j
n−j ⊺

 {
U k,ij

w i
n−j+1

:=

D k,j

w D (w)i
n−j

k j
n−j ⊺

:= w −U w i
n−j

k,ij j
n−j

:= w D (w)1
n−1

k
n−1 ⊺

:= U D U k k k
⊺

(25)

P k x k

k

18

Chapter 3
Implementation

This chapter will recount the entire development of the Mini-INS project. It will be split into

four sections, each detailing a distinct part of the work that was done. These sections are

also arranged in the appropriate order, such that the logical flow from one to the next

matches the order in which these parts were planned out and implemented during

development. This arrangement is illustrated in figure 3.1.

FUNCTIONALITY

Detailed functional description.
System design overview.

List of necessary components to fulfill
design.

THEORY

HARDWARE

Selection of electronic components.
Design of circuit schematic.

Realization of schematic on PCB.

REQUIREMENTS

SOFTWARE

Program MCU on the PCB.
Communicate with available sensors.

Implement navigation equations.

PCB

VERIFICATION

Perform experiments with PCB and record
data.

Verify the data and evaluate system
performance.

PROTOTYPE CONCLUSION

Figure 3.1: Overview of sections in the Implementation chapter.

3.1 System design

As the previous chapter may have hinted at, this diploma thesis involves the design and

realization of an INS on a Printed Circuit Board (PCB). The desired function of the

completed product can be summarized by the following three key points.

The board incorporates the necessary sensors for obtaining an accurate PVA estimation,

as was described in the previous chapter and illustrated in figure 3.2. The first sensor is an

Inertial Measurement Unit (IMU), featuring an accelerometer and a gyroscope. It will be a

Microelectromechanical System (MEMS) sensor which fits the requirements for a small

size and low power consumption. Complementary to the IMU, a magnetometer will also be

included to assist in determining magnetic heading. In addition, a GNSS receiver is placed

on the PCB, which will enhance the navigation computations from the IMU by performing

regular error and bias corrections through a Kalman filter. Finally, the schematic design

and layout will also plan for the existence of a static pressure sensor which could be fused

together with the rest to further improve the accuracy of the system for Unmanned Aerial

1. Provide position, velocity, and attitude (PVA) information at the output.

2. Maintain an output rate of around .100 Hz

3. Fulfill this functionality with the minimum footprint size and power consumption.

19

Vehicles (UAV). These aforementioned sensors will provide raw readings of various

quantities. However, the centerpiece of the board is a programmable ARM Microcontroller
Unit (MCU). The firmware of the processor is tasked with collecting the data from all

sensors and implementing the navigation equations to compute the PVA state of the

system. Furthermore, the same MCU is also responsible for handling the system's digital

interface, and communicate the outputs to other nodes that are connected to the PCB.

 Figure 3.2 provides a high-level overview of the system design, in the form of a block

diagram. It shows the main components that are needed to fullfil the goals of the project,

as well as a hint at how they shall communicate with each other. Note that the completed

system contains additional secondary components, like power regulators and electrical

connectors. However, this first diagram only showcases components that are of

operational interest to the system design. This includes processing units, interfaces, and

sensors.

ARM

SMA
antenna

CAN Bus

CAN
driver

GNSS
receiver

IMU Magnetometer Pressure
sensor

I2C bus

tube

UART

Figure 3.2: High-level system design block diagram.

3.1.1 System requirements

This subsection lists all the components which are necessary to realize the system design.

Additionally, it lists components which are not necessarily present in figure 3.2, but which

are necessary for the hardware design from an electrical standpoint.

■ Microcontroller
A single programmable microcontroller is at the center of the PCB. Its firmware will

configure and control all connected sensors, collect their measurements, and compute

the navigation algorithms that will convert the sensor data into position, velocity and

attitude. Additionally, it will implement the main interface for the PCB.

 The microcontroller family selected should be one that is promoted by the

20

manufacturer as a low-power solution. Additionally, it should also be available at a

small-package variant.

■ IMU

A MEMS inertial measurement unit shall be used, with, at minimum, a tri-axial

accelerometer and tri-axial gyroscope. It has to provide a digital interface, and feature

some method of ensuring that sampled data are not lost during brief pauses in

communication with the microcontroller. For the sensor, the following is also expected:

■ At least inner sampling rate.

For the accelerometer:

■ At least specific force range.

For the gyroscope:

■ Tactical-grade bias instability up to .

■ At least angular rate range.

■ Magnetometer
A tri-axial magnetometer will most likely be included as a sensor separate from the

IMU. It should ideally feature some way of applying hard-iron and soft-iron

compensation at the sampling level.

■ GNSS receiver
A multi-constellation GNSS receiver. It should be able to power an active GNSS

antenna, and provide digital interface communication. Furthermore, it should provide a

timepulse for the synchronization of measurements, and feature the necessary NMEA

messages for determining time, global position, and tri-axial velocity in the navigation

frame.

■ Static pressure sensor
The static pressure sensor should be able to operate at a pressure range that covers

the altitude range from ground level up to a few thousand meters of altitude. This

means a range of at least .

■ CAN driver
A CAN driver should translate between the low-voltage RX and TX CAN lines from the

microcontroller, and the higher-voltage CANH and CANL differential lines of the

external bus.

■ Power regulator
A power regulator IC shall be included, as per standard practice. It will be used to

isolate the sensitive components from noise coming from the power supply, as well as

ensure that the operating voltage throughout the PCB does not fluctuate.

Following is a list of operational requirements that are expected out of all electronic

components, that are to be incorporated into the hardware design.

1 kHz

6 g

5 /h∘

200 /s∘

[0, 15] psi

21

■ Extended temperature range

All components shall be expected to be operable in the Extended Commercial
temperature range, between and .

■ Low power consumption

For miniature UAS applications, battery power is one of the main factors that limit the

system design. As such, additional care should be exhibited when selecting

components, to limit the board's power consumption as much as possible.

■ Small footprint
Components should impact the size and layout of the designed PCB as little as

possible. This refers not only to the size of the component's package, but also to its

overall impact on the board. For example, all components must be available in SMD

packages that can be soldered on a single side of the PCB without through-holes.

■ Harsh environment tolerance

Components should operate under harsh mechanical conditions, such as intense

vibrations and high-g impacts.

■ Vibration-resistant connectors

All connectors that are surface-mounted to the PCB shall be vibration resistant.

Auxiliary connectors, such as for programming or debugging the microcontroller, are

exempt from this requirement.

■ Compatible digital interfaces

To avoid enlarging the PCB footprint with unnecessary circuitry, all selected

components should implement interfaces compatible with the other components that

they may communicate with. For example, if the IMU provides data output on I2C bus,

then the selected microcontroller must have an I2C interface.

3.2 Hardware design

3.2.1 Electronic component selection

This section recounts the process of selecting the necessary electronic components for

the circuit. The selection was not performed exhaustively, since the focus of this diploma

thesis is not to perform market research. Instead, for each component that was needed,

the search was limited to a specific established manufacturer which is known to produce

high-quality, reliable parts. This process also offers a benefit: if a specific part were to be

switched for another during development or production, there is a good chance that the

new part would be found from the same manufacturer, and that it would have the same

pinout and footprint. With this in mind, the search for each component was done in the

following way:

−40 C∘ +85 C∘

22

 Manufacturers usually offer multiple options in a family of products that feature identical

footprints and interfaces. Because of this, most components are usually interchangeable

with no modifications necessary to the schematic, and only minor alterations needed to the

firmware. With this in mind, the final choices for components were not necessarily made

optimally. Due to the market and supply situation at the time of writing, as well as the

inherently limited time in which a diploma thesis has to be realized, most components

were chosen simply because they were suitable and available. The final selections are

given in table 3.1.

Function Manufacturer Component

Power regulator Texas Instruments TPS62007DGSR

CAN driver Texas Instruments SN65HVD257DR

Microcontroller Unit (MCU) STMicroelectronics STM32G431KBT6

Inertial Measurement Unit (IMU) STMicroelectronics ISM330DHCXTR

Magnetometer STMicroelectronics LIS2MDLTR

Static pressure sensor Honeywell SSCMRND015PGSA3

GNSS receiver u-blox ZED-F9T-00B

Table 3.1: List of final selected components.

3.2.2 Work done on prototype

In the beginning of the diploma thesis, development was started using a breadboard for

prototyping. The STM32G431 microcontroller to be used, was soldered onto a

breadboard-compatible breakout board, along with the necessary capacitors. Additionally,

the X-NUCLEO-IKS02A1 expansion board was purchased from STMicroelectronics, which

contains an ISM330DHCXTR IMU, and an II2SMDC magnetometer. Note that this

magnetometer is not the same that was selected for the PCB, but their footprints and

functional specifications are identical. Finally, a board with a GNSS receiver was also

1. Identify suitable manufacturer, either through prior experience or recommendation by

the thesis supervisor.

2. In the appropriate category, list all available components by said manufacturer on

common vendor websites, like Mouser, DigiKey, Farnell, and so on.

3. Filter for desired digital interfaces.

4. Filter for needed operating temperature range.

5. Filter out components that are either too large, or not available in an SMD package, or

not suitable for low-power operations.

6. If multiple parts remain, pick one in cooperation with thesis supervisor.

23

obtained. To create a portable platform for experimentation, all these components were

glued onto a generic power bank.

 To interface with the INS, a Raspberry Pi Zero device was used. It is powered by the

power bank, and uses one of its output pins to power the INS. Additionally, a single

UART line is connected from the microcontroller to the Raspberry Pi, on which the

microcontroller continuously transmits the system's PVA state, as well as raw

measurements for future evaluation. Furthermore, a hat board from Waveshare was

connected to the Raspberry Pi, which features an LCD screen, along with a few

buttons. Using this, a crude user interface was developed, with which the user can choose

to display on the screen either an attitude indicator, or a heading and velocity indicator,

which are based on the data read-out from the microcontroller on the serial interface. The

completed prototype is shown in figure 3.3. A screenshot is also included in figure 3.4,

showing how both raw measurements and output data from the prototype could be

evaluated in Simulink.

Figure 3.3: Portable prototype of INS.

Figure 3.4: Screenshot of data evaluation in Simulink.

3.3V

1.44 in

24

3.2.3 Realization of schematic

Figure 3.5: Circuit schematic in KiCad.

Following the selection of components, the next step is to realize the schematic shown in

3.2. The schematic was drawn in KiCad, which is Free and Open Source Software

25

(FOSS). The completed version is shown in figure 3.5. It is segmented into logical

sections, each containing one of the active components. Descriptions of each section,

along with explanations for the passive components used, are given below.

1. Connectors

This schematic section contains the connectors through which the board will interface.

■ J1: This is the main power and I/O connector. It is placed on the PCB as a Molex
PicoBlade, on which the user can connect both the VDD power, and the differential

CAN bus lines. It is complemented with a reverse polarity protection diode, and a

noise-filtering capacitor which should be placed as close to the connector as

possible.

■ J2: This connector is used for programming and debugging the microcontroller. It

connects to the necessary pins for Serial Wire Debug (SWD), so that the

microcontroller on the board can be programmed directly using any ST-Link

adapter. It will be placed on the board as a standard pin header.

■ J4: This is an auxiliary connector and currently serves no purpose in normal

operation. It connects via UART both to the microcontroller, and the GNSS

receiver. It is placed in order to future-proof the design, in case a serial I/O would

ever be needed. For example, to configure the GNSS receiver externally using u-
blox software, or to read out raw data from the microcontroller. It will be placed on

the board as a non-standard pin header.

2.54 mm

1.00 mm

2. Microcontroller
This schematic section contains the microcontroller, and all of the required passive

components for its operation.

■ Capacitors are included as per the manufacturer's recommendations, which is one

big filtering capacitor for the digital power supply, one big filtering capacitor for the

analog power supply, and one small bypass capacitor for each VDD input on the

package. The LQFP-32 variant contains three VDD pins, so that's a total of five

capacitors.

■ Input interrupt pins ST_GNNS_PPS, MAG_INT, IMU_INT1, and IMU_INT2 are all

connected to GPIO with a different number. This is because on this STM32

controller, external interrupts cannot be configured to trigger multiple ports on the

same number.

■ A solder bridge JP1 is included, which pulls the BOOT0 pin either to high or low.

This pin is used to select the memory area that the firmware will boot from.

Leaving it externally controlled through the solder bridge was decided to be

preferable, for flexibility.

■ An auxiliary Light-Emitting Diode (LED) is connected to an arbitrary GPIO pin on

the microcontroller. This will be used to visually communicate the state of the

board.

■ The microcontroller is connected to two different I2C buses. That is because the

IMU and Magnetometer support a maximum clock rate of , while the1 MHz

26

pressure sensor only supports up to . So they were placed on separate

buses, to avoid the small delays that would be associated with resetting and

reconfiguring the I2C peripheral between transmissions.

400 kHz

3. Power regulator
The step-down DC-DC converter that was selected, should always output a constant

 supply voltage. It is placed in such a way, so as to isolate the components on the

board from the external power supply and ground. Bypass capacitors C2 and C3 are

placed as per standard practice, one for each potential side. The rest of the passive

elements are placed according to the manufacturer's recommendations.

3.3V

4. CAN driver
This IC should translate between the internal voltage ST_CAN_TX and ST_CAN_RX

lines, and the external differential bus CANH and CANL lines. A single bypass

capacitor C16 is placed next to this component as per the manufacturer's

recommendations.

5. Pressure sensor
The pressure sensor is connected to the I2C1 bus, which according to the part's

datasheet is connected to pull-up resistors. Also, a bypass capacitor is placed

next to its power pin as usual.

1 kΩ

6. GNSS receiver
The GNSS receiver is connected to the microcontroller with two different pairs of UART

RX and TX lines, one of which is also led out through J4 for future purposes. The

nRESET pin is also led to a GPIO on the microcontroller, allowing for the firmware to

reset the GNSS receiver if needed.

 The antenna is connected through an SMA connector, with passive elements,

according to the manufacturer's recommendations. Additionally, a protection fuse D3 is

included, which is meant to protect against Electrostatic Discharge (ESD).

7. IMU

The IMU is connected to the I2C2 bus, and its two interrupt output pins are lead to the

microcontroller in case they are needed for data handling. Additionally, as per the

manufacturer's recommendation, one large filtering capacitor and one small bypass

capacitor are included, which should be placed next to the voltage supply pins.

8. Magnetometer
The Magnetometer is also connected to the I2C2 bus, and its interrupt output pin is

lead to the microcontroller in case it is needed for data handling. Then, as per the

manufacturer's recommendation, one large filtering capacitor and one small bypass

capacitor are included, which should be placed next to the voltage supply pins. Finally,

again following the datasheet, a small capacitor is also placed between pins and .5 6

9. Additional parts

This schematic section is left for additional parts that are useful for the PCB.

27

3.2.4 Design of Printed Circuit Board layout

This subsection summarily describes the design process of the PCB layout. Like the

schematic, the PCB was also drawn in KiCad. In the interest of brevity, not every

component placement, track, and via, is rigorously analyzed in this document. Instead, this

subsection focuses only on providing a high-level overview of the PCB layout, along with

the thought process that lead to the board's shape and size. The first decision is the size

and outline of the PCB, and it is described below.

It was decided that the PCB shall consist of four layers. As is common practice in this

case, the two inner layers are to be filled with copper to create power areas for short

routing to either supply voltage or the ground. Specifically, the back-inner filled layer is

connected to the supply voltage and referred to as the power plane, while the front-inner

filled layer is connected to the ground and referred to as the ground plane. The next step

in the design process is to draw the layout of copper-filled zones, while planning for the

components that are to be placed on them. The resulting segmentation is shown in figure

3.6 and described below.

■ First are the mounting holes, which are simple through-holes meant for mounting

screws.

■ And second are the three additional noise-filtering capacitors, which should be

placed at various positions throughout the PCB. These should ideally be spread

out, and placed in areas that lack a nearby capacitor.

1. To reduce the board's size, both sides of the PCB will be used to place components.

2. All connectors, or components that have connectors, should be placed on the front

side. This includes the Molex connector J1, the SMA antenna connector, and the

pressure sensor since it bears a barbed port for a tube.

3. The GNSS receiver and the SMA antenna connector must be on the same plane,

because the trace from the antenna to RF_IN should not be routed through a via.

Therefore, the GNSS receiver should also be placed on the front side.

4. These four aforementioned components, together with the four mounting holes in the

corners, impose the minimum width and height for the board. After laying them out, the

final outline was obtained.

28

Figure 3.6: Copper-filled area segmentation on the PCB.

■ Power area

The first area that is needed, is the one that will encompass the J1 connector as well

as the power regulator. This area is filled with the external power supply and ground.

Conveniently, the CAN driver can also be placed on this area on the bottom side, since

it also needs to be supplied from VDD and be close to the external CAN bus.

■ Main area

This area is filled on the power plane with the operating voltage of all other

components on the board, as well as the internal GND on the ground plane.

■ Sensor area

This area is also filled with and GND but is separated from the main area. The

motivation for this is that two of the critical microelectronic sensors, the IMU and the

magnetometer, should be separated from noise as much as possible. Therefore, it is

considered beneficial to place them on their own isolated area, where they are

protected from noise that may be emitted from the microcontroller or other high-

frequency signal lines.

3.3V

3.3V

29

And with the aforementioned broad guidelines in mind, all components can be placed and

connected on the PCB. The first component which must be incorporated into the design is

the SMA antenna connector, which has to be placed as close as possible to the GNSS

receiver's RF_IN pin. Importantly, this connection must be made as directly as possible,

with curved tracks if a slight turn is required. The path of this track should be, to the extend

possible, surrounded by vias to the ground plane in order to protect it from noise. Finally,

the width of this track should be precisely calculated to have an effective impedance as

close as possible to . This value is chosen to, ideally, match the impedance of the

antenna. To compute the desired track width, a formula is given in [15]. According to the

PCB manufacturer, the track thickness will be , the isolation between the top layer

and the ground plane will be , and the material will be FR4 which has a dielectric

constant of . This means that the antenna needs to be routed using a track which is

 wide. In the final design the length of this route came out to be , which is

decently short and should adequately protect the GNSS chip.

 Moving on, a common good practice is to first connect all power pins, meaning those

that carry significant current either in or out of an IC. Following that, all lines carrying high

frequency signals should be connected, minimizing the length and corners on their tracks.

The completed design is illustrated in figures 3.7 and 3.8, each showing the front and back

layers of the PCB respectively.

 KiCad is also capable of rendering beautiful 3D models of the PCB. These are also

included here in figures 3.9 and 3.10, from the perspective of the front and back sides

respectively. Note that the 3D models of the components are not indicative of the real

parts, and are generic models included only for illustration. Another thing to note regarding

the bottom side of the 3D render, is that the bottom pins of the SMA antenna connector

appear hidden. That is because the 3D renderer used currently does not allow for the

adjustment of the PCB thickness, which results to the bottom pins of the connector

clipping inside the PCB's body.

 The final PCB has dimensions .

50 Ω

70 μm
75 μm

4.3
120 μm 9.4 mm

30 mm × 37 mm

30

Figure 3.7: Layout of the front layer of the PCB.

Figure 3.8: Layout of the back layer of the PCB.

31

Figure 3.9: 3D rendering of the front side of the PCB.

Figure 3.10: 3D rendering of the back side of the PCB.

32

3.3 Firmware

This section contains a high-level overview of the software that was developed for the

Mini-INS. Specifically, this refers to the firmware for the STM32 microcontroller. Since this

is an embedded ARM device, the software was written in the C programming language.

This document does not thoroughly analyze the source code in its entirety, since the

project is quite large. Instead, the focal point of this section is to familiarize the reader with

the structure of the software, as well as the basic design principles that were employed

during development. Additionally, it will recount how the functional requirements of the

project were met, which includes the communication with sensors and implementation of

navigation equations. As such, a good chunk of this section will consist of diagrams in the

Unified Modeling Language (UML), which is standard practice for software development.

 For reference, the following list defines how variables and data structures are handled in

the firmware.

■ Struct fields used to hold sensor measurements are typed to match the data

transmitted by the sensor. Typically these are int16_t , holding the value in two's

complement to the sensor's full scale.

■ Variables holding latitude or longitude are stored as 64-bit double types, in order to

store global positions with precision of five decimal seconds.

■ All other floating-point variables are stored as 32-bit float types.

■ Timestamps are stored as 64-bit uint64_t , in order to have millisecond precision to

UTC.

■ Some integers used as indices in short for-loops are stored as either int8_t or

 uint8_t .

■ All other integer types are stored as 32-bit uint32_t .

3.3.1 Development and build environment

This subsection provides a brief look into the tools that were utilized for the realization of

the firmware. For the editing of the source code itself, Visual Studio Code was used, which

is Free and Open Source Software (FOSS). The tool itself is not considered an Integrated
Development Environment (IDE), since at its core it is merely a text editor. However,

through the installation of various extensions, it becomes quite a powerful tool for the

development of software. Some of the key extensions used are C/C++ Extension Pack,

stm32-for-vscode, and Cortex-Debug. With these installed, it becomes possible to obtain

accurate auto-completion, type inference, and even debug the target device directly from

the editor.

 The project structure is the typical one for a Makefile C project. The top-level inc/

directory contains all of the .h header files, while the src/ directory contains all of the

 .c source files. Certain staple files were also taken from the manufacturer's Board

33

Support Package (BSP), these contain header files with the register definitions of the

 stm32g431 processor, the header files for the Cortex-M4 peripherals, the header files for

the ARMv7 architecture, the assembly startup file startup.s , and finally the linker script

file LinkedScript.ld . The whole project is then compiled with the help of a Makefile,

which invokes the arm-none-eabi-gcc compiler. This compiler is a part of the GNU Arm
Embedded Toolchain and is available online by Arm Ltd. Specifically, version

 10.3-2021.10 of the toolchain is used.

 By default, the Makefile is configured to compile a build for debugging. This, apart from

including debug symbols in the output, sets the optimization level to -Og , which enables

all compiler optimizations that do not interfere with debugging. To produce a release build,

the DEBUG variable should be set to 0 , and the compiler optimization to -O3 .

makes a debug build with -Og

make

makes a release build with -O3

make DEBUG=0 OPT=-O3

3.3.2 Data handling and synchronization

The management and synchronization of the data from the various sensors, as well as on

the CAN bus output, are the main challenges of this project. The objective of the Mini-INS

board is to provide PVA data on the CAN bus at a relatively high rate (e.g). This

output data shall be in the form of NMEA sentences, whose UTC timestamps must

accurately define the exact time at which the data in the message were valid at.

 The sensors are configured for high performance and high rate inner sampling, which

will typically be about . In this small microcontroller, there isn't sufficient

computational budget to compute the mechanization of the system at such a high rate.

Even if there was, it would be unnecessary to do so, since the measurements themselves

would likely be quite noisy at that rate. Instead, a simple decimation filter will be used

which will, for instance, average over every or so samples that are received. This

brings the rate of mechanization down to about , which coincides with the output

rate.

 Finally, asynchronously to the inertial sensor sampling and mechanization, the error

correction step with the Kalman filter shall be executed whenever new data are available

from the GNSS receiver. A diagram which summarizes the data flow through the

application is given in figure 3.11.

100 Hz

1000 Hz

10
100 Hz

34

GNSS IMU
Microcontroller

Decimation filter CAN bus

Sampling at 1000Hz

f, ω

f, ω

Σ

Mechanization at 100Hz

f, ω

Reset

Integrate PVA

PVA

Error correction at 1Hz

[position, velocity, time]

Calculate residuals

Kalman filter correction update

Correct position, velocity, and biases

Reset Kalman filter state to zero

Kalman filter time propagation update

Figure 3.11: Sequence diagram of data handling and computations.

At a rate of , as data is received from the GNSS receiver, the state of the whole

navigation model is to be updated using a linear Kalman filter. However, the intention is to

output data on the CAN bus at a much higher rate, therefore the more frequent readings

from the IMU sensor will be used to update the state at the output rate. This creates the

following two considerations.

■ The data read from the GNSS receiver come at a delay in relation to their validity due

to the serial transmission to the microcontroller or other processing done by the GNSS

chip. For the synchronization of this, a timepulse is given out by the GNSS receiver

that indicates the point in time at which the next data to be received will be valid for.

Therefore, the processing done at the Kalman filter should take into account not the

IMU data at the time of reception, but the data at the time of the timepulse. For this

purpose, the timepulse output of the receiver shall be wired to trigger a hardware

interrupt at its rising edge on the microcontroller, which will begin to store IMU data at

the right time, until they are needed by the Kalman filter.

■ Between the timepulse and the complete reception of the GNSS data, the system

should continue updating the navigation state and transmitting it on the CAN bus.

However, when the Kalman filter is evaluated, an older mechanization state will be

1 Hz

35

used. This makes the model output invalid for the current time and not suitable for

transmission to the output, since the preceding transmission will have had a newer
state. To compensate for this, all the IMU data sampled between the timepulse and the

Kalman filter update needs to be stored in a buffer, so that the mechanization state can

be extrapolated to the current time.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

imu

mech

buffer

timepulse

gnss nmea

kalman

CAN nmea nmea nmea nmea nmea

Figure 3.12: Timing diagram illustrating the data synchronization.

The timing of the navigation system can be seen on the diagram in figure 3.12. Below is a

brief description of specific time instances in the diagram. Note that these labels do not

represent real time units, and the duration of pulses is arbitrary, since the diagram is only

for illustration.

3.3.3 Synchronization of timestamps

The position, velocity, and attitude information that is written to the system's output will

typically include a timestamp, denoting the exact time at which the data in the message

were valid. The Mini-INS board will not feature its own RTC functionality, since time-

keeping is not its primary purpose. Instead, timestamps will be synchronized using the

time obtained from the GNSS NMEA sentences.

1. The imu data is sampled from the sensor at an arbitrary high rate.

2. After decimating to a lower rate, the mechanization state mech is updated.

3. After every mechanization update, the new PVA is transmitted on the CAN bus.

4. At time 6 a hardware interrupt is triggered from the timepulse.

■ The extrapolation buffer is initialized and enabled.

■ The latest valid PVA state is stored as a starting point in the buffer

■ While the buffer is enabled, IMU data will be stored there at every mechanization

update (times 8 and 11).

5. At time 13 , the complete GNSS data is received.

■ Kalman filter is updated using the new GNSS data, and mechanization state from

time 6 .

■ The output mechanization state from the Kalman filter is extrapolated to time 13

using the data stored in the buffer (which represent the mechanization state at

times 8 and 11).

36

 However, there needs to be some time extrapolation, since the GNSS receiver will

typically only output messages at and the Mini-INS should output data at a rate of at

least . At this rate, a timestamp precision in the order of magnitude of milliseconds

shall be sufficient. The idea is to use one the microcontroller's embedded timers to keep

track of the time elapsed since the last GNSS timepulse. Then, when constructing an

output NMEA sentence for transmission, the timer's counter value (in milliseconds) can be

added to the last received timestamp, which creates the timestamp of the sentence.

 Finally, an additional variable is needed. That is because there is a delay

between the timepulse, and when the microcontroller finishes receiving the NMEA

sentence. During this delay, it is still necessary to know the last received timestamp, since

it is still needed to construct output messages. Therefore, since the timer has to be reset

precisely at the rising edge of every timepulse, the microcontroller needs to store the

counter's value before it resets it, in order to maintain the ability to calculate the time

elapsed since the last known timestamp.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

timepulse

timer 600 700 0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600

offset 700 900

gnss nmea 1 nmea 2

timestamp timestamp0 timestamp1 timestamp2

Figure 3.13: Timing diagram illustrating the computation of timestamps.

The timestamp synchronization scheme can be seen on the diagram in figure 3.13. The

values shown in the and variables are in milliseconds for simplicity. With

this implemented, the current timestamp in milliseconds can be calculated at any time

using the following simple formula.

3.3.4 Software architecture

Working with software for embedded devices, there tend to be significant limitations in

terms of program memory and execution time. As such, the software architecture should

be considered carefully, to ensure that the source code is small, efficient, and

maintainable. While with conventional development, garbage collection and pointer

sharing might be an afterthought, in embedded development irresponsible design can lead

to a slew of heisenbugs [17] and undefined behaviors that are backbreaking to solve.

Therefore, the software design here employs a simple, hierarchical approach. Every

module of the application shall be statically allocated at boot, and maintain ownership of

variables and other data structures.

 An abridged version of the final software architecture is given in figure 3.14, in the form

of a UML class diagram. Note that, for brevity, it does not include every single variable and

1 Hz
100 Hz

offset

timer offset

timestamp+ timer + offset [ms]

37

method, but only enough to give the reader a good overview of the structure of the

application.

main

ins

interface

main()

ins

insInit()

insUpdate()

interface

cavnDriver

interfaceInit()

interfaceUpdate()

nav

PVA

extrapolationBuffer

navInit()

navUpdateMech()

navUpdateKf()

imu

i2cDriver

imuInit()

imuUpdate()

gnss

uartDriver

gnssInit()

gnssUpdate()

gnssGetTimestamp() : uint64_t

Synchronizes data and computations.

kf

x, Q, P

kfInit()

kfCorrectionUpdate()

kfTimeUpdate()

kfReset()

Holds navigation state and
implement system mechanization.

pva

Figure 3.14: Abridged class diagram, illustrating the software architecture.

3.3.5 Software behavior

Much like the architecture, when developing embedded software it is critical to define a

robust behavior pattern. In this case especially, it is necessary for the software to interact

with the hardware. The latter usually carries out its tasks independently of the former,

which gives rise to synchronization issues during the interoperability of the two. This is

usually in the form of hardware timers interrupting the software, Direct Memory Access
(DMA) peripherals, a signal from an external device causing an interrupt, and so on.

 Therefore, it is necessary to plan the software's execution with the necessary hardware

synchronization in mind. For robustness and predictability, the whole software shall be

designed for synchronous execution. This means that in the final design, there will exist

only one linear firmware cycle, which shall not be preempted by hardware interrupts. A

simple diagram illustrating this principle is given in figure 3.15, which shows the basic

execution flow in the Initialization and Run states. In the same figure, the execution of the

 insUpdate() method is also shown. Designing the software this way also makes it robust

38

against race conditions, as well as easier to read and maintain. That is because the reader

may rest assured that all lines of code will be executed sequentially, and without other

parts of the codebase altering the data that is used.

 One caveat is that, since everything is handled sequentially in the main firmware cycle,

its execution time should be as short as possible. This is to ensure that the software

responds timely to signals raised by the hardware or other events. For instance, since the

method imuUpdate() is only called once per cycle, regardless of the status of the sensor,

new measurements may only be obtained once per cycle. Naturally, if the cycle is then too

long, measurements could be lost.

Startup

sysInit()

interfaceInit()

insInit()

navInit()

imuInit()

gnssInit()

Run

interfaceUpdate()

insUpdate()

navUpdate()

imuUpdate()

gnssUpdate()

interfaceUpdate()

insUpdate()

imuUpdate()

gnssUpdate()

navUpdateMech()

extrapolationBufferPush()

true

extrapolationBuffer.enabled?
false

true

imu sample?
false

nav.navUpdateKf()

true

gnss sample?
false

Figure 3.15: Activity diagram of module-level software execution flow.

The next important part is the imuUpdate() method, whose execution is shown in figure

3.16. This method is responsible for communicating with the IMU and magnetometer, as

well as the application of a decimation filter over the received data. Both of these

components, as is common practice with digital sensors, define registers in their data

sheets on which configurations and raw data can be accessed. On the I2C bus on which

these sensors are connected, the microcontroller is the master and the two sensors are

slave nodes. To access any particular register on a sensor, first the sensor's slave address

39

must be transmitted on the bus, followed by the address of the register and a one-bit flag

specifying whether the register should be read from or written to.

 It is of critical importance to the application that not a single sampled measurement is

lost. This can easily occur if the microcontroller does not read out the sensor's data

registers before a new measurement is made on the device, since the new measurement

will override the older one. To get around this, the manufacturer of the IMU offers two

options: one is to send a hardware interrupt to the microcontroller whenever a new

measurement is ready, and other is to internally store measurements in a First In First Out
(FIFO) buffer. Since the development is following a synchronous design scheme, the latter

option is chosen. Therefore, in each firmware cycle, the microcontroller will poll the IMU for

its FIFO status, which should return the amount of data in the queue, and then proceed to

request items from it one at a time. Reading out the entire buffer on every cycle is

problematic for two reasons: the first is that an inappropriate number of measurements

may be added to the decimation filter, and the second is that just spending time to receive

the data over I2C may cause the application to not meet its computation deadlines.

Therefore, a parameter is defined called FIFO_MAX_BATCH_SIZE , which limits how many

items from the FIFO queue should be processed in a single firmware cycle. This

parameter should satisfy two criteria:

■ The batch size should be the maximum possible, while ensuring that temporal

constraints are not violated. In other words, that the firmware cycle does not become

too long.

■ The batch size should be the minimum possible, while ensuring that the FIFO queue

never overflows. For reference, the buffer on the ISM330DHCX sensor is about

in size.

Get number of data in FIFO

n=0

Fetch sample

Add to decimation filter

n++

n < FIFO_MAX_BATCH_SIZE && n < #data

Figure 3.16: Activity diagram of imuUpdate() method.

The last module to go over, is the driver responsible for communicating with the GNSS

receiver. While important, its implementation is, in practice, much simpler than the one for

the IMU. The microcontroller and the GNSS receiver are wired to communicate via two

3 KB

40

UART serial lines. Transmissions over UART are asynchronous and do not require any

arrangements between nodes, which makes Direct Memory Access (DMA) a great way for

handle them. DMA refers to a hardware peripheral offered on STM32 devices, which can

autonomously transfer data between the memory and communication peripherals, without

the need for intervention by the software. In this case, the DMA will be configured to

automatically copy any data that are received on the UART RX line, and store them at a

specific buffer in memory. This serial transmission and direct copy to memory will take

place in the background, freeing up precious execution time for the software.

 An important thing to handle here, as was described at a previous section, is the

hardware timepulse interrupt that will periodically be sent from the GNSS receiver. The

interrupt handler, along the lines of generally accepted good practices, should only

perform a minimal number of operations and exit. One action that needs to happen,

precisely at the time of the interrupt, is the resetting of the timer which counts the time

elapsed since the last timepulse. Another thing is the starting of the DMA transfer to

ensure that nothing of what is transmitted after the timepulse is lost by the microcontroller.

The scheme of what was described here, is shown in an activity diagram in figure 3.17.

Timepulse interrupt

Store timer counter

Restart timer

Start DMA read

Parse buffer for
NMEA messages

Stop DMA read

Store GNSS readings

Reset timer offset

true

found?
false

true

DMA read ongoing?
false

Figure 3.17: Activity diagram of gnssUpdate() method.

3.3.6 System initialization

This subsection is technically an extension to the previous one, since it also describes the

software behavior. However, it has been separated in order to provide a self-contained

segment that explains the initialization of the system. This refers to the time right after the

startup of the firmware, when the very first measurements are obtained from the sensors.

As was briefly mentioned along within the theoretical background, in this phase the

41

firmware is tasked with determining the initial attitude of the system in terms of the roll ,

pitch , and yaw Euler angles. The roll and pitch can be computed from the

accelerometer's specific force vector using equations and . The yaw is then

computed from the magnetic field intensity using equation , which also incorporates tilt

compensation from the known and .

 Specifically, the process of initialization will compute the initial attitude after passing the

measurements through an Exponential Moving Average (EMA). This is effectively a low-

pass filter, which is useful in this step, since the initial attitude determination requires

ideally a constant measurement. At first, new values will simply be added to the EMA.

Then, once a predefined number of values has been accumulated, the averaged

measurements are used to compute the initial attitude angles. The weight used for the

EMA will be adaptive and equal to . This is convenient, since the fewer samples

there are, the more weight it automatically gives to the new measurements.

 The same EMA approach will be used to initialize the position and velocity vectors from

the first GNSS data. Note that, the number of averaged samples for this cannot be too

large, since only one sample will be received every second. It is considered beneficial to

devote these extra few seconds to initialization for the benefit of potentially filtering out one

or two early erroneous measurements from the GNSS receiver.

 To compute the attitude this way, it is necessary for the system to be in standstill

conditions. That is because the attitude angles are computed by sensing the effect of the

gravitational acceleration on all three sensitive specific force axes. This can only be done if

the force of gravity is the only force currently acting on the body. In the firmware, the state

of the vehicle will be decided by computing the norms of both the specific force and the

angular rate vectors, and comparing them against predefined thresholds. Furthermore, by

knowing that the system is in standstill condition, there is one more piece of information

that may be extracted from the first measurements: the initial bias of the gyroscope. That

is because if to assume that the vehicle is at rest, then the angular rates should measure

zero around all three axes. Therefore, the measured average angular rates can be directly

copied over to initialize the gyroscope bias vector.

 The complete initialization process that is described here is demonstrated in an activity

diagram in figure 3.18. Note that the values shown for thresholds and number of samples

are just examples used for illustration.

ϕ

θ ψ

(4) (5)
(6)

ϕ θ

 #samples+1
#samples

42

Data from IMU

Add specific force,
angular rates,
and magnetic intensity
to exponential moving averages

w = nof_samples / (nof_samples+1)
f_avg ← w*f_avg + (1-w)*f
ω_avg ← w*ω_avg + (1-w)*ω
η_avg ← w*η_avg + (1-w)*η

nof_samples++

nof_samples ≥ 500
true false

f_avg → φ, θ

η_avg → ψ

ω_avg → ω_bias

End attitude initialization

true

|ω| < 0.3deg
false

true

|f| < 1.05g
false

f_avg ← 0
ω_avg ← 0
η_avg ← 0
nof_samples ← 0

Data from GNSS

w = nof_gnss_samples / (nof_gnss_samples+1)
posisition ← w*posisition + (1-w)*gnss_pos
velocity ← w*velocity + (1-w)*gnss_velocity

nof_gnss_samples++

End position initialization

true

nof_gnss_samples > 3
false

Figure 3.18: Activity diagram of system initialization from first measurements.

3.3.7 Computation strategy

Previous sections establish the functional requirements for the project, according to which

the system must be able to compute the mechanization at about . They also

outline the software design and behavioral guidelines, according to which the firmware will

be governed by a synchronous firmware cycle where all operations will take place. From

these, one can conclude that the firmware cycle must not, under any circumstances,

exceed in execution time. In fact, when considering the batch processing of the

FIFO queue from the IMU, it becomes evident that the firmware cycle has to be, on

average, significantly shorter than that. Therefore, it is necessary to plan out the time

budget of the cycle in order to ensure that all computations are possible, at least

theoretically.

 In this subsection, for brevity, the risk of losing IMU samples is presented as the key

motivator behind the requirement for a strict firmware cycle, however it is not the only one.

100 Hz

10 ms

43

While the IMU sampling issue could in theory be solved with hardware interrupts, other

requirements like the mechanization update are far less trivial to deal with in a

computation-intensive environment.

 The first step is to obtain an estimate of how much time is required for the execution of

key parts in the firmware cycle. This refers to code sections which are either

computationally intensive, or interact with the hardware in a blocking way. The

synchronous design of the firmware makes things simple here, since the interrupt

execution time is made negligible. Therefore, the execution time of each code segment is

practically constant, and does not need to be thoroughly analyzed for edge cases.

 These execution time measurements were made with the -Og optimization flag, to

avoid making optimistic estimates. For reference, the microcontroller's clock has been

parameterized in a Phase-Locked Loop (PLL) configuration with frequency. The

measurements made are given in table 3.2.

Operation Execution time

Receive the maximum FIFO batch from the IMU

Compute mechanization of the system

Parse GNSS reception buffer for NMEA messages

Compute Kalman filter correction update

Compute Kalman filter time propagation

Table 3.2: Worst-case execution times for key parts of the firmware cycle.

It is immediately obvious that, in this synchronous design, the Kalman filter computations

cannot satisfy the temporal constraints of the firmware cycle if they are made sequentially.

Either IMU measurements will be missed due to a FIFO overrun, or the system will fail its

directive of computing its state and transmitting it to the output every . An

illustration of this problem is shown in figure 3.19, where the reception of new GNSS data

at time 7 leads to the firmware computing the Kalman filter updates at time 8 , which

causes that specific firmware cycle fw_cycle to become significantly longer than the rest.

This leads to a hypothetical FIFO queue overrun on the IMU at time 13 .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

gnss

kalman

fw_cycle

imu_fifo 2 0 1 2 0 1 2 0 1 2 3 4 5

Figure 3.19: Timing diagram showing potential time violation due to Kalman filter calculations.

The only solution here is to spread out these computations over multiple firmware cycles

where there is time to spare. This is possible in this case because the Kalman filter

updates only need to be computed at approximately , when there is new data from

100 Hz

64 MHz

2 ms

1 ms

0.7 ms

7 ms

50 ms

10 ms

1 Hz

44

the GNSS receiver. This idea, which will subsequently be referred to as distributed
computation, is illustrated with a simple example in figure 3.20. Here, a function which

computes the sum of three numbers is written in two different ways. The first sequentially

adds the numbers together and returns the result, performing three operations in the

process. The second implements some sort of Finite State Machine (FSM), wherein every

time the function is called, it only performs one operation before returning. In this example,

with the second version of the function, the caller needs to first call sumStart() to initiate

the computation, and then call sumStep() three times to finish the computation. The

caller of the function is aware that the result is ready when sumStep() returns 0 . In

figure 3.21, this principle is also illustrated in the form of a simple state diagram.

// computes the sum of three numbers sequentially

int sum(a, b, c) {

 int out = a;

 out += b;

 out += c;

 return out;

}

// computes the sum of three numbers with distributed computation

void sumStart(*out, a, b, c) {

 state_ = 1;

 out_ = out; a_ = a; b_ = b; c_ = c; // store copies of parameters

}

int sumStep() {

 switch (state_)

 {

 case 1:

 *out_ = a_;

 state_++;

 break;

 case 2:

 *out_ += b_;

 state_++;

 break;

 case 3:

 *out_ += c_;

 state_ = 0;

 break;

 }

 return state_;

}

Figure 3.20: Illustration of distributed computation principle.

S t a r t

s t a t e = 0
copy parameters

C o m p u t a t i o n s t e p

per form computat ion cor responding to s ta te
computat ion done? s ta te = 0
o t h e r w i s e s t a t e + +

s t a t e ! = 0 s t a t e = = 0

Figure 3.21: State diagram showing the basic FSM structure of distributed computation.

This computation method does of course add some additional overhead. Neither the

copying of the function's parameters in the starting step nor the repeated entering and

exiting of the computation step function are negligible in terms of processing time.

45

However, distributed computation will, in principle, be used in cases where the

computations performed in each step completely overshadow this overhead. This

assumption holds in the case of the Kalman filter updates, where individual computational

steps usually involve the multiplication of matrices.

 What this computation strategy offers is not speed, but flexibility. It provides the ability to

split long computations into state machines, which perform only a single computation at

each state transition. To realize the benefit of this strategy, recall the example in figure

3.19, where a long computation inside the firmware cycle caused the overrun of the IMUs

internal memory, which leads to a loss of measurements. Then, compare that timing

diagram with the one shown in figure 3.22, where the Kalman filter updates have been

implemented using a distributed computation strategy. As is illustrated in the improved

example, the firmware cycle still becomes slightly longer while a Kalman filter computation

is ongoing, and in this longer time the FIFO on the IMU does manage to accumulate more

measurements, but with proper tuning of the FIFO_MAX_BATCH_SIZE parameter and the

amount of operations delegated to each computation step, the buffer overrun is prevented

in the end.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

gnss

kalman

fw_cycle

imu_fifo 2 0 1 2 0 1 2 0 1 2 3 0 1 2 3 0 1 2 3

Figure 3.22: Timing diagram showing distribution of computations over multiple cycles.

There are some caveats to consider when implementing this computation strategy:

■ Since the Kalman filter computations are effectively preempted by the rest of the

firmware between each step, they will take longer to be completed than if they were

computed sequentially. This may significantly increase the time-span between the

complete reception of the GNSS data, and the correction of the state and biases in the

model. This is considered acceptable in this case, since the rest of the firmware

continues unimpeded and can compute the system's mechanization at the regular rate.

■ Additional care must be exhibited in the processing of the extrapolation buffer, which

was described in previous subsections. During the Kalman filter update in the final

implementation, the extrapolation itself will also be distributed across multiple

computation steps. That is because this buffer can contain up to IMU samples,

and each extrapolation step involves a complete computation of the mechanization

from a single IMU sample. The consideration here, is that the firmware will continue

appending samples to the extrapolation buffer between these computation steps. This

is also assumed to not be a risk in this case, since race conditions are prevented by

design, and only when the last sample is consumed the extrapolation can conclude

and the buffer can be disabled.

15 × 15

100

46

■ If the distribution of computation operations is done too aggressively, there exists the

possibility that the Kalman filter update will not have concluded by the time the next

timepulse is received from the GNSS receiver. As has been explained in previous

subsections, upon reception of a timepulse interrupt, the firmware needs to reset the

extrapolation buffer and to start filling it with IMU samples. If an ongoing Kalman filter

computation is still in the process of using this buffer at that time, the system shall enter

an error state. Therefore, the distribution of the Kalman filter computations has to be

done diligently. The granularity with which operations are spread into multiple cycles

shall be coarse enough, so that the maximum firmware cycle length is not exceeded,

and at the same time fine enough, so that the error correction phase is not delayed

excessively.

3.3.8 Control Area Network bus output

One of the objectives of the diploma thesis, in the context of implementation of the INS, is

to output the state of the system on a CAN bus. The INS will continuously and

independently output data on the bus at a rate of . It was decided that this data

shall be in the form of NMEA messages, which is a proprietary protocol issued by the

National Marine Electronics Association [16]. This protocol was chosen since it is a well-

defined industry standard. The messages of this protocol start with the $ character,

followed by a five-character message identification code, then a set of comma-separated

data, and finally a checksum, the carriage-return <CR> and line-feed <LF> characters.

The typical message structure is shown below.

For the Mini-INS, it is decided that the output messages should bear the talker ID,

which stands for Inertial Navigation. Then, in order to communicate the entire PVA state,

the messages outlined further will be used. Unfortunately, there are no standard messages

in the NMEA specification for providing 3D velocity or attitude. Therefore, to convey those

two pieces of information, two vendor-proprietary messages will be used: RMV [18] and

SHR [19].

■ GGA - Global Positioning System Fix Data

 $--GGA,hhmmss.ss,llll.lll,a,yyyyy.yyy,a,x,uu,v.v,w.w,M,x.x,M,,zzzz*hh<CR><LF

■ hhmmss.ss UTC Time UTC of position in hhmmss.sss format, (000000.000 ~

235959.999)

■ llll.lll Latitude Latitude in ddmm.mmmm format. Leading zeros are inserted.

100 Hz

$XXCCC,D ,D , ..,D −1 2 N − hh <∗ CR >< LF >

XX

CCC

Di

hh∗

− talker ID, used to identify the source of the message

− protocol header, used to identify the message type

− message payload

− checksum

IN

47

■ A N/S Indicator ‘N’ = North, ‘S’ = South

■ yyyyy.yyy Longitude Longitude in dddmm.mmmm format. Leading zeros are

inserted.

■ A E/W Indicator ‘E’ = East, ‘W’ = West

■ x GPS quality indicator

■ uu Number of satellites in use, (00 ~ 24)

■ v.v HDOP Horizontal dilution of precision, (00.0 ~ 99.9)

■ w.w Altitude Mean sea level altitude (-9999.9 ~ 17999.9) in meters

■ x.x Geoidal Separation in meters

■ zzzz DGPS Station ID Differential reference station ID, 0000 ~ 1023

■ hh Checksum

■ RMV - 3D Velocity Information

 $--RMV,+xxx.x,+yyy.y,+zzz.z*hh<CR><LF>

■ +xxx.x True east velocity (-514.4 to 514.4 meters/second)

■ +yyy.y True north velocity (-514.4 to 514.4 meters/second)

■ +zzz.z Up velocity (-999.9 to 999.9 meters/second)

■ hh Checksum

■ SHR - Inertial Attitude Data

 $--SHR,hhmmss.sss,hhh.hh,T,rrr.rr,ppp.pp,xxx.xx,a.aaa,b.bbb,c.ccc,d,e*hh<CR>

■ hhmmss.ss UTC Time UTC of position in hhmmss.sss format, (000000.000 ~

235959.999)

■ hhh.hh Heading in degrees

■ T Flag to indicate that the Heading is True Heading (i.e. to True North)

■ rrr.rr Roll Angle in degrees

■ ppp.pp Pitch Angle in degrees

■ xxx.xx Heave

■ a.aaa Roll Angle Accuracy Estimate (Stdev) in degrees

■ b.bbb Pitch Angle Accuracy Estimate (Stdev) in degrees

■ c.ccc Heading Angle Accuracy Estimate (Stdev) in degrees

■ d Aiding Status

■ e IMU Status

■ hh Checksum

Note that values such as HDOP, number of satellites in use, and GPS quality indicator are

not anyhow computed in the firmware. These will simply be stored from the input NMEA

sentences from the GNSS receiver and written directly to these output messages.

3.3.9 Auxiliary serial output

This section briefly recounts the implementation of an auxiliary serial interface that is

available on the microcontroller. Already since the subsection about prototyping it was

hinted that there exists a serial interface on which raw data were sent to a Raspberry Pi or

48

a computer running Simulink. In fact, this is a simple UART driver, on which data are

continuously being written during the board's operation. In the final PCB, this is done on

the ST_UART1_TX pin which is lead out to the J4 connector. This way, the interface may

be utilized even in the future during further development.

 The existence of this interface was omitted from the software behavior diagrams in the

previous subsections. This was done for brevity, since this is an optional part which should

be possible to be even completely disabled for normal operation. Apart from that, it plugs

into the main application much like any other module, as it is illustrated in figure 3.15.

Specifically, with methods that are called rawInterfaceInit() and

 rawInterfaceUpdate() .

 The operation of this driver is quite simple. New data are all written on a buffer, and

when data in the buffer exceed some threshold, a DMA transfer starts, which transmits the

entire buffer out on the UART TX line. In practice, two buffers are required to do this

properly: one read buffer and one write buffer. New data are all always added to the write

buffer. Then, before a transfer is initiated, the two buffers are swapped, so that the write

buffer becomes the new read buffer and vice versa. The DMA transfer then transfers the

contents of the read buffer. This scheme is necessary for the firmware to continue being

able to write data even when a DMA transfer is ongoing. This functionality of the

 rawInterfaceUpdate() method is shown in figure 3.23.

previous DMA finished
true false

Swap read and write buffer pointers

Start DMA transfer from read buffer

error

true

data in write buffer > 700B
false

Figure 3.23: Activity diagram of rawInterfaceUpdate() method.

Data is transmitted on this serial output in the form of messages. Each message starts

with the $ character, and is terminated by \n . It is made up of fixed-length data in a

specific sequence. The structure of these messages is given for reference in tables 3.3,

3.4, and 3.5.

Byte position Length Type Value

0 4B string $imu

4 8B uint64 timestamp in

8 4B float temperature in

12 12B 3x float angular rates in

ms

C∘

s
rad

49

Byte position Length Type Value

24 12B 3x float specific force in

36 12B 3x float magnetic field intensity in

48 4B uint32 sample time in

52 12B 3x float accelerometer bias in

54 12B 3x float gyroscope bias in

Table 3.3: Structure of IMU raw data message data on the serial output.

Byte position Length Type Value

0 4B string $gps

4 8B uint64 timestamp in

12 8B double latitude in

20 8B double longitude in

28 8B double altitude in

36 12B 3x float velocity in NED

48 8B uint64 NMEA timestamp in

Table 3.4: Structure of GNSS raw data message on the serial output.

Byte position Length Type Value

0 4B string $pva

4 8B uint64 timestamp in

12 24B 3x double position in LLA

36 12B 3x float velocity in NED

48 36B 9x float attitude as a 3x3 DCM

84 1B bool valid gnss fix

Table 3.5: Structure of PVA message on the serial output.

3.3.10 Configuration parameters

This last subsection provides an overview of the available parameters for the configuration

of the INS. The reader is referred to the file config.h among the source code, where

these parameters are defined as macros. Table 3.6 serves as a reference of available

options, along with their description and default values. Note that specific hardware

configurations, such as GPIO ports and pin numbers, are also defined in that file, but are

g

T

us

g

s
rad

ms

deg

deg

m

s
m

ms

ms

(rad, rad,m)

s
m

50

not listed here since they are fixed to the PCB and not of operational significance. Also,

during the testing and evaluation of the board, only the default values listed were used.

How the system operates under different configurations has not been explored.

Parameter Description Default value

 IMU_ODR

Output data rate of the IMU

sensors (in according to the

datasheet)

 1660

 MAG_ODR

Output data rate of the

magnetometer (in according

to the datasheet)

 100

 IMU_ACCEL_RANGE_G

Full scale range of the

accelerometer (in according to

the datasheet)

 4

 IMU_GYRO_RANGE_DPS

Full scale range of the

gyroscope (in according to the

datasheet)

 500

 IMU_INITIALIZATION_SAMPLES
Number of IMU samples to be

used in the initialization phase
 500

 IMU_FIFO_MAX_BATCH_SIZE

Maximum number of IMU

samples to be read out of the

FIFO in a single firmware cycle

 16

 IMU_MIN_NOF_SAMPLES

Minimum number of IMU

samples to accumulate in the

decimation filter, before using

them to compute the system's

mechanization

 16

 SF_EMA_WEIGHT

A weight in the range [0, 1] ,

to be given to new specific force

measurements in the EMA

filtering

 0.05

 GNSS_BUFFER_LEN

Size of the buffer that stores

data read on the UART RX line

from the GNSS receiver (in

bytes)

 512

 EXTRAPOLATION_BUFFER_LEN
Size of the extrapolation buffer

(in number of IMU samples)
 100

Hz

Hz

g

s
∘

51

Parameter Description Default value

 ACC_DYN_THRESHOLD

Threshold for determining

system dynamics from

accelerometer measurement

norm (in)

 1.05

 GYRO_DYN_THRESHOLD

Threshold for determining

system dynamics from

gyroscope measurement norm

(in)

 deg2rad(0.3)

 ACC_BIAS_DELTA_LIMIT

Maximum absolute change to be

made in a single Kalman

update, to the bias of a single

axis of the accelerometer

 0.001

 GYRO_BIAS_DELTA_LIMIT

Maximum absolute change to be

made in a single Kalman

update, to the bias of a single

axis of the gyroscope

 deg2rad(0.001)

 GNSS_FIX_VALIDITY_MS

The timespan after a GNSS

timepulse, where it is considered

that there is an active GNSS fix.

This GNSS status flags at the

system's outputs (in).

 2000

 GNSS_FIX_RESET_MS

Time of GNSS outage, after

which the Kalman filter is reset

(in)

 5000

Table 3.6: Parameters available for compile-time configuration.

3.4 Verification of results

This section outlines the verification of the completed INS. It includes a brief overview of

how experimental data were obtained and processed. In addition, it showcases the results

that were obtained, as well as the author's assessment of the system's performance.

 As a disclaimer, it should be noted that the verification was not performed on a

completed PCB. At the time of writing, the manufacturing process has begun, but has not

yet been completed. Therefore, any verification data included here were obtained using

the breadboard prototype shown in an earlier section. Unfortunately, it is not possible to

assess the final accuracy of the designed system this way. That is because some

components that are used on the prototype offer (theoretically) inferior performance,

g

s
rad

ms

ms

52

compared to the components that were selected for the PCB manufacturing. The most

significant of them being the GNSS receiver u-blox NEO-6P that was used with the

prototype, which advertises a lower accuracy than the selected u-blox ZED-F9T, and also

lacks its features of compensation to ionospheric errors. Finally, the overall makeshift

assembly of MEMS inertial sensors connected with jumper wires is not robust, and

potentially leads to vibration on the IMU or noise on the communication signals.

 Therefore, this section focuses on a qualitative assessment of the system's

performance. This means that the system is expected to perform its function correctly

throughout the experiment. For reference, this includes the following:

■ Correctly perform the Kalman filter error compensations, while maintaining an output

rate of .

■ Maintain accurate attitude, acknowledging that the platform may exhibit vibrations in

excess to those of the vehicle.

■ Maintain position with a horizontal accuracy, at least that of the standalone GNSS

receiver, which is .

■ Maintain velocity which upholds the positional accuracy requirement between GNSS

updates.

■ Timestamp all output data with a precision to the UTC time synchronized at the

GNSS receiver.

As described in the subsection about the prototype, the auxiliary serial interface is

connected to a Raspberry Pi Zero which is able to record all raw data to a USB drive. The

data is then parsed and plotted using a Python script. To avoid overloading this document,

mostly an overview will be given with key plots. For detailed results of the experiments, the

reader is instead referred to the data which is provided among the attachments.

 For the experiment, the prototype was taken on public transport vehicles in Prague and

secured on a seat as much as possible. The results shown here are from a two-part

experiment: firstly tram number 9 was ridden from stop Vozovna Motol to stop Sídliště
Řepy, followed by a ride on bus number 180 to the stop Zličín.

 The latitude and longitude of positions recorded is shown in figure 3.24. A red star

denotes the position where the experiment was moved from the tram to the bus. Zooming

in, it is possible to observe the effect of the aided navigation using the Kalman filter. As

can be seen in the enhanced part of the image, the output positions can be visually

distinguished into groups of ten or so points, where the velocity and position are computed

at a high rate from IMU measurements. Between these groups of points, it can be seen

how update from the GNSS is used with the Kalman filter to correct the vehicle's

trajectory. The reported altitude is also given for completeness in figure 3.25. Note that the

gap near the middle of the following plots is due to the move from the tram to the bus,

when recording was temporarily stopped.

100 Hz

2.5 m

10 ms

1 Hz

53

Figure 3.24: Map overview of experiment route.

Figure 3.25: Altitude from experiment data.

Next up, the attitude-tracking precision of the INS should be ascertained. Firstly, a good

way to evaluate the computed yaw, is to overlay arrow lines on the map at various points

on the route, which are angled according to the heading at that position. This can be seen

in figure 3.26. There are areas with some error in the heading, but these errors are

corrected in each case after a few seconds.

Figure 3.26: Map overview of experiment route, with superimposed heading pointers.

Following that, the computed speed shall be evaluated. Since the experiment was

performed on ground vehicles, it is useful to inspect the velocity in terms of ground speed

in , and vertical speed. The results are shown in the figure 3.27. Note that for

convenience, the vertical speed depicted in the plot is inverted, since the vertical velocity

reported by the INS points downwards. The ground speed results look quite good; it is

h
km

54

clear how between stops the vehicle accelerates up to roughly , and then

decelerates to a halt. In the second part of the plot, which represents data collected from

the bus, it can even be seen how the bus decelerates to yield priority or to make a turn.

Figure 3.27: Ground speed and vertical speed from experiment data.

Next, it is important to evaluate the output attitude angles. The results of the experiment

are shown in figure 3.28. As expected, the yaw angle exhibits little variance and only

changes when the vehicle makes a turn. The roll and pitch angles on the other hand, are

quite noisy here. This is likely attributed to the less-than-ideal fastening of the prototype on

the bus seat. However, it is still possible to observe that there is increased pitch when the

vehicle is climbing to a higher altitude, and some increased roll when the vehicle is turning.

Figure 3.28: Attitude Euler angles from experiment data.

One more output that may be useful to include, is the progression of the sensor biases

throughout the experiment. They are shown in figure 3.29. These values are difficult to

evaluate by themselves, but they do exhibit a progression in one direction, which is what is

generally expected from these types of sensors.

50

h
km

55

Figure 3.29: Accelerometer and gyroscope biases from experiment data.

Finally, the last thing to verify is the correct timestamping of the reported data. As

mentioned previously in the document, all output data should include a timestamp of its

validity with precision. These timestamps should be synchronized to the UTC time

through the GNSS receiver and the timepulses. A short chunk of timestamps from the

output data of the experiment is shown in figure 3.30. In the plot, timestamps from the

GNSS NMEA messages which are received approximately every , are shown as a

dashed red line. The blue line shows the timestamps as they annotate the output PVA

data that are read out. This is a plot for illustration.

 Note that some steps of the dashed red line are longer than others. In fact, the shorter

steps represent time increases. There are two factors that may have contributed to

the longer gaps between GNSS timestamp updates. The first is that there was some

temporary GNSS outage, and the current firmware discards GNSS data when there is no

3D fix. The second is that some data may have been periodically discarded at the serial

interface of the Raspberry Pi Zero due to it being a single-core processor running Linux,

which may not have kept up with the transmission rate in real-time.

Figure 3.30: Time-stamping of outputs in experiment data.

10 ms

1 sec

Y = X

1 sec

56

3.4.1 Comparison with reference MATLAB model

The results presented in this section, appear to be those of a functional INS. However, the

focus of this diploma thesis is the adjustment of a given MATLAB model for use by an

embedded microcontroller. Looking at the results alone, it is difficult to ascertain whether

or not that conversion is successful. Therefore, an additional step is necessary: the

comparison between the output computed by the micronctroller on the INS and by the

reference MATLAB model. In the interest of this, raw measurements from the IMU and

GNSS receiver are also being sent out from the microntroller via the auxiliary serial

interface. These raw measurements were also stored during the experiment, and thus can

be given as input to the MATLAB model.

 The main outputs to compare are those for position, velocity, and attitude. Side-by-side

comparisons are given for each in figures 3.31, 3.32, and 3.33 respectively.

Figure 3.31: Comparison of position output, between own implementation (left) and reference

MATLAB model (right).

Figure 3.32: Comparison of velocity output, between own implementation (left) and reference

MATLAB model (right).

57

Figure 3.33: Comparison of attitudes output, between own implementation (left) and

reference MATLAB model (right).

Visually, the microcontroller implementation appears to be able to track the reference

model decently. Some deviations do exist, particularly with the attitude outputs. The

hypothesis is that this may be due to differences in the computation flow in each case; for

example filter windows, initialization, and so on.

58

Chapter 4
Conclusion

This diploma thesis involved the design and realization of an Inertial Navigation System.

Specifically, the focus was to create a miniature unit, whose tight size and low power

consumption would make it an attractive choice for compact Unmanned Aerial Systems.

The primary objectives were to design a small low-power Printed Circuit Board and to

develop the firmware for an embeeded microcontroller which would provide position,

velocity, and attitude information at .

 Having concluded the work on the INS, the following goals were met:

■ The PCB was designed and sent for manufacturing. In terms of size, the final

dimensions were , which is only about twice the area of a €2 coin.

The design meets the standard good practices, and minimizes electrical noise

propagation around sensitive components and the entire board. At the time of writing, it

is pending delivery and soldering.

■ The Kalman filter model that was given to the author, was adapted for use on an

embedded microcontroller. The correct functionality was verified in operation, and

found to be satisfactory. The algorithm was optimized for the available computation

power, and distributed in such a way that the target output rate is not

compromised.

■ A complete INS firmware was developed for the selected STM32 microcontroller. It is

able to communicate with all connected sensors efficiently, and can process

measurements fast enough so that not a single sampled quantity is lost. It can compute

the system's mechanization to produce PVA output at a rate of , as well as

compute the Kalman filter update steps every without compromising its output

rate.

Having concentrated on the fulfillment of the above objectives, some topics for future

improvement still exist regarding this INS. These were planned for at the hardware level,

and included in the PCB design, so their implementation should be possible entirely in the

software.

■ Incorporation of the magnetometer into the the Kalman filter estimation. This has the

potential of improving system accuracy, since the quantity measured by this sensor is

different than the rest, and can be theoretically used to infer other values such as

heading and gyro bias.

■ Incorporation of the static pressure sensor into the Kalman filter estimation. For the

same reasons stated above.

100 Hz

30 mm × 37 mm

100 Hz

100 Hz
1 sec

59

Appendix A
List of Acronyms

AC Alternating Current INS Inertial Navigation System

ARM Advanced RISC Machines LED Light-Emitting Diode

BSP Board Support Package LLA Latitude Longitude Altitude

CAN Controller Area Network LQE Linear Quadratic Estimator

DC Direct Current LQFP Low Profile Quad Flat Package

DCM Direction Cosine Matrix MCU Microcontroller Unit

DMA Direct Memory Access MEMS Micro Electromechanical Systems

DOF Degrees Of Freedom NED North East Down

ECEF Earth-Centered, Earth-Fixed NMEA
National Marine Electronics

Association

ENU East North Up PCB Printed Circuit Board

ESD Electrostatic Discharge PLL Phase-Locked Loop

FIFO First In First Out PPS Pulse Per Second

FOSS Free and Open Source Software PVA Position, Velocity, Attitude

FSM Finite State Machine RTC Real Time Clock

GNSS
Global Navigation Satellite

Systems
SMD Surface-Mounted Device

GPIO General Purpose Input Output SWD Serial Wire Debug

GPS Global Positioning System UART
Universal Asynchronous Receiver-

Transmitter

HDOP Horizontal dilution of precision UAS Unmanned Aerial System

I/O Input Output UAV Unmanned Aerial Vehicle

I2C Inter-Integrated Circuit UML Unified Modeling Language

IC Integrated Circuit USB Universal Serial Bus

IDE
Integrated Development

Environment
UTC Universal Time Coordinated

IMU Inertial Measurement Unit

60

Appendix B
References

[1] DiSalle, Robert, (2002), "Space and time: Inertial frames"

https://plato.stanford.edu/entries/spacetime-iframes/#InerFram20thCentSpecGeneRela

[2] Farrell, Jay, (2008), "Aided navigation: GPS with high rate sensors", McGraw-Hill, Inc.

[3] Nourmohammadi, Hossein and Keighobadi, Jafar, (2018), "Fuzzy adaptive integration

scheme for low-cost SINS/GPS navigation system", Mechanical Systems and Signal

Processing

[4] Ahmad, Norhafizan and Ghazilla, Raja Ariffin Raja and Khairi, Nazirah M and Kasi,

Vijayabaskar, (2013), "Reviews on various inertial measurement unit (IMU) sensor

applications", International Journal of Signal Processing Systems

[5] Sukkarieh, Salah and Gibbens, Peter and Grocholsky, Ben and Willis, Keith and

Durrant-Whyte, Hugh F, (2000), "A low-cost, redundant inertial measurement unit for

unmanned air vehicles", The International Journal of Robotics Research, SAGE

Publications

[6] El-Sheimy, Naser and Hou, Haiying and Niu, Xiaoji, (2007), "Analysis and modeling of

inertial sensors using Allan variance", IEEE Transactions on instrumentation and

measurement, IEEE

[7] VectorNav, "What is an Inertial Measurement Unit?"

https://www.vectornav.com/resources/inertial-navigation-articles/what-is-an-inertial-

measurement-unit-imu

[8] Elmenreich, Wilfried, (2002), "An introduction to sensor fusion", Vienna University of

Technology, Austria

[9] Kalman, Rudolph Emil, (1960), "A new approach to linear filtering and prediction

problems"

[10] Petteri Aimonen

https://commons.wikimedia.org/w/index.php?curid=17475883

[11] Pedley, Mark, (2013), "Tilt sensing using a three-axis accelerometer", Freescale

semiconductor application note, Freescale Semiconductor Austin, TX, USA

[12] Grygorenko, Vadym and Family, Associated Part and CY8C27xxx, C, (2011),

"Sensing-magnetic compass with tilt compensation", Cypress Perform

[13] Thornton, Catherine L and Bierman, Gerald J, (1980), "UDU/T/covariance factorization

for Kalman filtering"

[14] Bierman, Gerald J, (1976), "Measurement updating using the UD factorization",

Automatica, Elsevier

[15] Burkhardt, Andrew J and Gregg, Christopher S and Staniforth, J Alan, (2000),

"Calculation of PCB track impedance", Circuit World, MCB UP Ltd

61

[16] SiRF Technology, Inc, (2007), "NMEA Reference Manual"

https://www.sparkfun.com/datasheets/GPS/NMEA%20Reference%20Manual-Rev2.1-

Dec07.pdf

[17] Hobbs, Chris, (2010), "Protecting Applications Against Heisenbugs", QNX Software

Systems

[18] Garmin International, Inc., (2008), "Garmin Proprietary NMEA 0183 Sentences

TECHNICAL SPECIFICATIONS"

https://developer.garmin.com/downloads/legacy/uploads/2015/08/190-00684-00.pdf

[19] Eric S. Raymond, (2022), "NMEA Revealed"

https://docs.novatel.com/OEM7/Content/SPAN_Logs/PASHR.htm

